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Understanding how genetic variation is maintained in a metapopulation is a
longstanding problem in evolutionary biology. Historical resurveys of poly-
morphisms have offered efficient insights about evolutionary mechanisms,
but are often conducted on single, large populations, neglecting the more com-
prehensive view afforded by considering all populations in a metapopulation.
Here, we resurveyed a metapopulation of spotted salamanders (Ambystoma
maculatum) to understand the evolutionary drivers of frequency variation in
an egg mass colour polymorphism. We found that this metapopulation was
demographically, phenotypically and environmentally stable over the last
three decades. However, further analysis revealed evidence for two modes of
evolution in this metapopulation—genetic drift and balancing selection.
Although we cannot identify the balancing mechanism from these data, our
findings present a clear view of contemporary evolution in colour morph
frequency and demonstrate the importance of metapopulation-scale studies
for capturing a broad range of evolutionary dynamics.
Introduction
The growing recognition that evolutionary processes can occur on contempor-
ary timescales and microgeographic scales compels the need to understand
how evolution affects ecology [1–3]. In particular, this realization suggests
that ecological and evolutionary processes interact in determining trait distri-
butions, species interactions, population dynamics and ecosystem processes
[4,5]. Oftentimes, ecological patterns cannot be fully explained without recourse
to underlying evolutionary dynamics [1,6–8].

Concurrently, historical resurveys have emerged as an invaluable approach
to understanding ecology and evolution [9–12]. Resurveys can expose dominant
ecological processes underlying variation in population abundances [13,14],
community composition [15,16] and geographic range [17] and can reveal phe-
notypic and genetic shifts in wild populations [18–22]. Knowing how and why
traits change can provide insights into the fate of wild populations facing rapid
global change [23,24]. However, if relegated to single or large populations,
historical surveys might be biased in their revelations about underlying evol-
utionary mechanisms, particularly those operating in small populations such
as drift.

Here, we take advantage of a historical survey (1990–1991) to assess con-
temporary evolution in a spotted salamander (Ambystoma maculatum)
metapopulation. The focal trait is a visible polymorphism in egg mass color-
ation (figure 1a,b). Because microevolution has been demonstrated in spotted
salamander behaviour, morphology and physiology [25–31], we resurveyed
this metapopulation to evaluate if morph frequency had evolved over three dec-
ades. Based on natural history and theory, we generated a series of a priori
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Figure 1. (a) Clear and white morphs of spotted salamander egg masses on the bottom of a temporary pond. (b) Colour variation is discrete, illustrated here by
morph-specific transmission of incident light (280–700 nm) through 1 cm of jelly. (c) Morph frequency varied among populations and across time, exemplified by
our resurvey of a spotted salamander metapopulation in central Pennsylvania. Each pair of coloured points linked by a line (n = 31) illustrates the varied direction
and magnitude of population-level morph frequency change between surveys. Photo: Mark C. Urban.
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predictions to identify possible modes of evolution: direc-
tional selection due to environmental change, balancing
selection and genetic drift (table 1).
Methods
Study system
The focal metapopulation is located in 70 km2 of broadleaf forest
in central Pennsylvania, USA (electronic supplementary material,
appendix SI). Although terrestrial as adults, spotted salamanders
depend on small, isolated wetlands for reproduction [41]. Adult
salamanders migrate to breeding ponds in early spring to mate
and lay eggs. Each female oviposits one or more globular clusters
called egg masses which include up to several hundred eggs
encased in jelly (figure 1a) [42]. After several months, larvae
metamorphose and leave breeding ponds [41].

Spotted salamander egg masses are dimorphic in coloration
(figure 1a). The clear morph is transparent whereas egg jelly
proteins in thewhitemorph [43,44] strongly attenuate light, render-
ing it almost opaque (figure 1b). For example, at its centre a clear
egg mass with a radius of 3 cm receives 68% of incident visible
light (400–700 nm). A white egg mass of the same dimensions
receives 0.06% (electronic supplementary material, appendix SII).
Such striking phenotypic differences make morph classification
highly repeatable across surveys and surveyors (intraclass r =
0.96; electronic supplementary material, appendix SIII).

Polymorphic and monomorphic populations are found
range-wide [43–52]. What, if any, selective agents drive this
spatial variation is unresolved [44,48,49,51–55]. The original
study of this metapopulation by Ruth [56] suggested a causative
link between cation concentration and morph frequency. But
while pondwater chemistry appears to have consistent explana-
tory power [54,56], a mechanistic link with morph frequency
remains elusive, as does strong support for competing hypoth-
eses: predation, oxygen limitation and ultraviolet radiation
[49,53,55]. Although not conclusive, coloration is likely under
genetic control: ovisac anatomy varies by polymorphism [43],
individual females lay the same egg mass morph through time
[44], and morph-specific protein profiles are conserved across
1600 km [43,56]. Further, the demonstration of complementary
patterns of morph-specific mortality and microgeographic
variation is consistent with evolution by natural selection [48].

Data collection and analysis
Ruth [56] documented egg polymorphisms and water chemistry
in 34 ponds in Rothrock State Forest in central Pennsylvania. We
relocated 31 of them from annotated maps [57] and resurveyed
them in April 2020 following original methods (electronic
supplementary material, appendix SI: table S1). Briefly, one
observer (STG) slowly waded ponds, counting each morph.
Prior to each survey, the observer measured pH with an
Oakton PCTS 35 probe and collected water for dissolved organic
carbon (DOC) analysis [58]. DOC and pH were used as proxies
for cation concentrations and environmental change: DOC cov-
aries with sodium (r =−0.54, p < 0.05), and pH covaries with
calcium, potassium and magnesium (r > 0.6, p < 0.05; electronic
supplementary material, appendix SIV).

To assess ecological change since initial surveys, we compared
population size (eggmass counts), DOC and pH from the two time
periods (historical: 1990–1991; contemporary: 2020). The effect of
survey period (t) on population size and DOC was tested with a
linear mixed model with random intercepts for ‘population’
effects. Prior to analysis of population size, egg mass counts and
DOC datawere log-transformed to meet model assumptions (Sha-
piro–Wilk’sW = 0.98, p = 0.2187;W = 0.98, p = 0.2419). Acidity data
did not fit Gaussian, lognormal, Poisson or gamma distributions,
so the difference between time periods was evaluated with a
pairwise Wilcoxon rank-sum test.

We next examined predictions in table 1 and followed model
structures articulated there. Unless otherwise noted, all analyses
were conducted in R v. 4.0.3 [59] using quantreg [60] and lme4
[61]. All data can be accessed in Dryad [62].

To compare morph frequencies between historical and con-
temporary surveys, we used a binomial generalized linear mixed
model to test for metapopulation-wide shift in the proportion of
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white (PW) eggmasseswith survey period (t) as the fixed effect and
random intercepts for each population. Unless specified, we used
linear regression for the remaining analyses. Given overlapping
generations and the potential for skipped reproductive years in
spotted salamanders, we estimated population size as the mean
number of egg masses (N) observed across all surveys [63]. To
characterize the change in environmental variables (Δe) and
morph frequency (ΔPW), we subtracted each population’s histori-
cal values (PW90) from contemporary ones (PW20). To test for
balancing selection, we assessed the relationship between morph
frequency in the historical period with the contemporary period:
PW20∼PW90. In this format, a slope (b) of less than 1 indicates that
a balancing mechanism such as negative frequency-dependent
selection could be stabilizing morph frequencies across the meta-
population [36,37,64,65].

If drift is driving morph evolution, frequency variance
should increase with increasing population size. We used quan-
tile regression, which tracks how the variance distribution of the
mean varies, to analyse how the variance of absolute changes in
morph frequencies (|ΔPW|) changed with population size. We
also compared observed morph frequencies with Monte Carlo
simulations designed to demonstrate sample size effects on
drift. We simulated drift for each population, parameterizing
each with corresponding field-collected data (initial proportion
of white egg masses: PW90, and population size: N ). Briefly,
samples of size N were drawn from a binomial distribution
with replacement for five generations. Initial binomial probabil-
ities were set to PW90. Subsequent generations were initialized
with frequencies from preceding iterations to produce a
random walk in time. Each sampling event was replicated 100
times per population and included five generations, assuming
a 6-year generation time [66–68] (additional detail in electronic
supplementary material, appendix SIV). To compare simulated
and observed morph frequency change, we analysed the
simulated data as we did for the observed data.
Results
Overall, the metapopulation was stable across three decades.
No populations became extirpated naturally, and population
sizes were similar between survey periods at a mean of
88 egg masses per pond (F1,51.5 = 1.57, p = 0.287). Metapopu-
lation morph frequency was also similar between surveys
(PW90 = 0.707, PW20 = 0.701; F = 0.365, p = 0.546). Finally,
biogeochemistry did not vary over time (pH = 4.6, p = 0.32;
DOC = 3.95 mg l−1, F1,56.7 = 0.422, p = 0.519; electronic
supplementary material, appendix SI: figure S1)

Although the aggregate view of the metapopulation
revealed no net change, morph frequencies in some popu-
lations increased while others decreased (ΔPW: mean =−0.02,
range−0.36–0.33; figure 1c). Population size (N) did not explain
observed morph frequency changes (F1,29 = 0.909, p = 0.348),
nor did environmental change (ΔpH: F1,29 = 0.588, p = 0.449;
ΔDOC: F1,29 = 0.666, p = 0.421; electronic supplemen-
tary material, appendix SI: figure S2). Including population
size (N) in environmental change models did not alter
the results (ΔpH: F2,28 = 0.005, p = 0.967; ΔDOC: F2,28 = 0.162,
p = 0.691).

However, as predicted by balancing selection, we found a
slope significantly less than 1 for the positive relationship
between historical and contemporary morph frequencies
(b = 0.39, 95% CI 0.09–0.69, F1,29 = 7.1, p = 0.013; figure 2a). To
control for a possible effect of population size, we ran the
same model again with N as a covariate; the results were
similar (b = 0.40, 95% CI 0.09–0.71, F2,28 = 6.9, p = 0.014).
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balancing mechanism such as negative frequency-dependent selection is stabilizing morph frequencies by driving high frequencies lower, and low frequencies
higher. The dashed line indicates the 1 : 1 slope, where no change in frequency occurs between surveys. (b) There was no metapopulation-level difference in
morph frequency between periods (ΔPW =−0.017 and −0.002 for observed and simulated data, respectively; inset). Using absolute change in morph frequency
(|ΔPW|), quantile regression (95th quantile) fitted to observed data (solid line) indicates a population size effect driven by large-magnitude change in small popu-
lations. Observed data are a good qualitative match to a Monte Carlo simulation of evolution by drift alone; depicted here by quantile regression (95th quantile,
dashed line) through the endpoints of simulated evolution by drift.

royalsocietypublishing.org/journal/rsbl
Biol.Lett.17:20200901

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 J

ul
y 

20
22

 

Also, as predicted by drift, we found that morph fre-
quency change (|ΔPW|) was greater and more variable in
small populations (τ = 0.95, t =−2.69, p = 0.0118; figure 2b).
Further supporting a role for drift, observed data fell within
the 95% confidence intervals of the slope and intercept
describing the 95th and 90th quantiles of the simulated drift-
ing metapopulation (electronic supplementary material,
appendix SI: table S2).
Discussion
We found no evidence of changes in metapopulation size,
population size, biogeochemistry or morph frequencies
between surveys. A closer inspection, guided by mechanistic
predictions in table 1, indicated that genetic drift and balan-
cing selection were ongoing during the three decades
between surveys (figure 2). Our findings match a broad
expectation that contemporary evolution is a multifarious
process, in which the relative importance of drift and
selection depends on population size [32,69–75].

This interplay is crucial for understanding the evolution
and persistence of polymorphisms [38,76–79] and the conser-
vation of small populations [32,80–82]. The observed, large-
magnitude frequency change in small populations (N < 100)
is consistent with contemporary evolution by drift—as our
simulation demonstrates (figure 2b). However, our test for
balancing selection (figure 2a) coupled with the persistence
of the polymorphism in populations of all sizes suggests a
broad influence of balancing mechanisms. Previous work
suggested that spatial heterogeneity in selection could stabil-
ize this polymorphism (e.g. [48,54]), but moderate-to-strong
negative frequency-dependent selection could also overcome
drift (electronic supplementary material, appendix SVI). For
example, given that half of the populations in this metapopu-
lation exceed 57, a selection differential greater than 0.018
would be required to stabilize the polymorphism in the
majority of populations [83,84], which seems possible given
evidence for strong selection and evolutionary differences
on other traits in this system [26–29]. Ultimately, our results
provide support for one or more balancing mechanisms stabi-
lizing morph frequency around an equilibrium frequency—
presumably, the observed aggregate mean (PW≈0.7; figure 2a).
As a caveat, although our results are consistent with meta-
population-wide balancing mechanisms such as negative
frequency-dependent selection, we rely solely on two time
points spanning multiple generations. More robust inferences
could be gained from data collected over shorter intervals.

To better understand this system, future work should con-
firm the genetic basis for jelly coloration, refine population
size effects on drift–selection balance, experimentally probe
potential balancing mechanisms [85,86], and examine the
possibility that frequency variation can drive eco-evolution-
ary feedbacks [87–90]. Finally, although balancing selection
could stabilize morph frequencies locally, the identity of the
possible stabilizing selection on equilibrium morph fre-
quency remains unknown. Given widespread evidence for
clinal variation in polymorphism frequencies in other systems
[91–93], regional differences in selection seem likely.

When combined with fine-scaled ecological data and repli-
cate populations, historical resurveys can provide unique
insights into evolutionary processes in nature. In this case,
we leveraged metapopulation-scale resurveys to illustrate
how contemporaneous drift and selection can drive micro-
geographic variation in a poorly understood polymorphism.
Crucially, our ability to detect these dynamics depended on
including the many small populations that constitute this
metapopulation (N < 100 for most populations). Although
populations of 1000 are often featured in studies (e.g. [51,68]),
small populations are much more typical (e.g. [94]). For
example, a survey of 405 breeding ponds (total N = 29 598
egg masses) across Pennsylvania found that the median
number of egg masses per pond was 33, with 78% of ponds
having fewer than 100 (electronic supplementary material,
appendix SVII). Given what we learned from our resurvey,
drift is likely a significant evolutionary process in these
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metapopulations, and for spotted salamanders in general.
However, the metapopulation-wide influence of drift could
be substantially under-represented if evolutionary dynamics
are modelled on rare, large ‘charismatic’ populations.
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