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Abstract: The virus causing COVID-19 has spread rapidly worldwide and threatens 12 

millions of lives. It remains unknown if summer weather will reduce its continued 13 

spread, thereby alleviating strains on hospitals and providing time for vaccine 14 

development. Early insights from laboratory studies of related coronaviruses predicted 15 

that COVID-19 would decline at higher temperatures, humidity, and ultraviolet light. 16 

Using current, fine-scaled weather data and global reports of infection we developed a 17 

model that explained 36% of variation in early growth rates before intervention, with 18 

17% based on weather or demography and 19% based on country-specific effects. We 19 

found that ultraviolet light was most strongly associated with lower COVID-19 growth 20 

rates.  Projections suggest that, in the absence of intervention, COVID-19 will decrease 21 

temporarily during summer, rebound by autumn, and peak next winter. However, 22 

uncertainty remains high and the probability of a weekly doubling rate remained >20% 23 

throughout the summer in the absence of control. Consequently, aggressive policy 24 

interventions will likely be needed in spite of seasonal trends. 25 

  26 
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 27 

Main Text:  28 

Novel Coronavirus Disease 2019 (COVID-19) is causing widespread morbidity and mortality 29 

throughout the world (1, 2). The SARS-CoV-2 virus responsible for this disease has infected 30 

over 2.2 million people when this article went into review (3). Much of the world is 31 

implementing non-pharmaceutical interventions, including preventing large gatherings, 32 

voluntary or enforced social distancing, and contact tracing and quarantining, in order to prevent 33 

infections from overwhelming healthcare systems and exacerbating mortality rates (2, 4). 34 

However, these interventions risk substantial economic damage and thus decisionmakers are 35 

currently developing plans for lifting them. Consequently, improved forecasts of COVID-19 36 

risks are needed to inform decisions that weigh risks to both human health and economy (2). 37 

One of the greatest uncertainties for projecting future COVID-19 risk is how weather will 38 

affect its future transmission dynamics. SARS-Cov-2 might be particularly sensitive to weather 39 

because it survives longer outside the human body than other viruses (5). Rising temperatures 40 

and humidity in the northern hemisphere summer could reduce SARS-CoV-2 transmission rates 41 

(6-8), providing time for healthcare system recovery, drug and vaccine development, and a return 42 

to economic activity. Simultaneously, the southern hemisphere is entering winter, and we do not 43 

know if winter weather will increase COVID-19 risks, especially in developing countries with 44 

reduced healthcare capacity. Early analyses of COVID-19 cases predicted that high temperatures 45 

would reduce transmission during the summer (9-11). These predictions have been widely 46 

reported in mainstream media and are informing decisions about relaxing control efforts soon. 47 

However, these analyses relied on the early stages of viral spread before the epidemic had 48 

reached warmer regions and thus potentially conflated weather with initial emergence and global 49 

transport. 50 
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We estimate how weather affects COVID-19 growth rate using data through April 13th, 51 

2020 by applying methods that improve model predictive accuracy, incorporate uncertainty, and 52 

reduce biases. Based on emerging evidence, we developed several a priori predictions about how 53 

weather, either directly or indirectly via modified human behaviors (e.g., aggregating indoors), 54 

affects COVID-19 growth rate. Preliminary research on SARS-Cov-2 (9, 10, 12) and related 55 

viruses (8, 13) predicted that COVID-19 growth would peak at low or intermediate temperatures. 56 

However, other coronaviruses demonstrate weak temperature dependence, instead depending on 57 

social or travel dynamics (7). High humidity also might decrease viral survival, limit 58 

transmission of expelled viral particles, or decrease host resistance (13-15). Ultraviolet light 59 

effectively kills viruses such as SARS-Cov-1 (16), and thus sunny days might decrease outdoor 60 

transmission or promote immune resistance via vitamin D production (17). We also evaluate 61 

demographic variables, assuming greater transmission in denser and older (>60) populations.  62 

We modeled maximum growth rate of COVID-19 cases to estimate contributions from 63 

underlying climate and population dependencies without healthcare interventions (e.g., social 64 

distancing). Hence, we restrict analyses to the early growth phase before interventions reduced 65 

transmission, but after community transmission began, when the vast majority of the population 66 

was still susceptible to this novel virus.  We estimated the average maximum growth rate (λ) as 67 

the exponential increase of cases (ln(Nt) – ln(N0)/t, where Nt = cases at time, t, and N0 = initial 68 

cases) for the three worst weeks in each political unit (country or state/province depending on 69 

available data (3)), where t = 7 days (see Supplementary materials for additional periods). 70 

Testing and reporting of COVID-19 likely vary across political units. However, estimated 71 

growth rates should remain robust to these biases assuming detection probabilities remain 72 

constant during the short, one-week estimation period. We restricted analyses to locations with 73 
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>40 cases to eliminate periods before local community transmission. Applying these criteria, we 74 

used data from 128 countries and 98 states or provinces. 75 

We applied Bayesian Markov Chain Monte Carlo methods with uninformative priors to 76 

estimate parameters. We obtained daily infection data from (3) and 3-hour weather data from the 77 

ERA5 reanalysis for the 14 days preceding case counts consistent with the 1-14 day infective 78 

period (18). We used fine-scaled weather data rather than long-term climatic monthly means to 79 

model observed weather-outbreak dynamics. Weather data was weighted by population size in 80 

each 0.25° grid cell within each political unit to capture the weather most closely associated with 81 

outbreaks in population centers. We used leave-one-out cross-validation to choose the best 82 

models, which ranks model on predictive accuracy on excluded data. We included a random 83 

country effect to account for differences in national control response times, health care capacity, 84 

testing rates, and other characteristics intrinsic to country of origin.  85 

 The best model for predicting maximum COVID-19 growth rate predicted 36% of the 86 

variation in COVID-19 growth rates (Fig. 1), and 17% excluding country effects. This model 87 

included maximum daily ultraviolet light, mean daily temperature, proportion elderly, and mean 88 

daily relative humidity (Fig. 2A). Competing models reflected the same qualitative results and 89 

similar parameter estimates (see Supplementary materials). Ultraviolet (UV) light had the 90 

strongest and most significant effect of tested meteorological variables on COVID-19 growth 91 

(βUV = -0.44, 95% credible intervals (Cis): -0.53, -0.36). Contrary to predictions, temperature 92 

positively affected COVID-19 growth rate (βtemp = 0.23, 95% CIs: 0.15, 0.32), although this is 93 

conditional on accounting for UV in the model (note that temperature and UV are moderately 94 

correlated (r=0.75) in our data set and extensive testing was done to ensure coefficients estimates 95 

were not an artifact of this correlation; see Supplementary Materials). As expected, relative 96 
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humidity decreased growth rates, although not significantly, either by reducing the virus’ 97 

survival outside humans or reducing airborne transmission (βhumid = -0.05, 95% CIs: -0.11, 0.00). 98 

Absolute humidity was strongly correlated with temperature (r = 0.88) and thus could be 99 

exchanged with temperature with little difference in model performance. Contrary to predictions, 100 

the proportion of elderly decreased COVID-19 growth rate (βpopsize = -0.07, 95% CIs: -0.14, -101 

0.00), most likely due to outbreaks in developed countries with older populations. Population 102 

density was not selected in any top model. The model was characterized by equally strong 103 

random effects associated with country of origin (Fig. 2B). For instance, Turkey, Brazil, Iran, the 104 

U.S., and Spain had the highest growth rates independent of modeled factors, whereas China, 105 

Iceland, Burkina Faso, Sweden, and Cambodia had the lowest. The strong negative effect 106 

associated with China indicates the effect of early interventions and is accounted for in our 107 

model. Notably, while intervention will substantially influence the absolute values of growth 108 

(i.e., the intercept in our model), our predictions can still be interpreted to represent relative 109 

differences in risk throughout the year.    110 

 We next explored why earlier studies might have predicted a negative association 111 

between temperature and COVID-19. Alone, temperature has a weak, negative effect on 112 

COVID-19 growth rate in our model, which becomes positive after adding other factors, and in 113 

particular, UV. Even with other parameters, temperature negatively affects COVID-19 early in 114 

the pandemic (Fig. 3, top). Significant positive temperature dependence emerges by late 115 

February following transmission to warmer, high-UV regions of climate space, like Africa (19) 116 

(see Fig. 3 bottom for filling of climate space). Notably our analysis does not specifically attempt 117 

to reproduce previous studies, so differences are expected depending on the details of decisions 118 

in other studies. This finding urges caution in estimating climatic niches of new, pandemic 119 
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pathogens before they reach an equilibrium distribution with climate. Initial climate associations 120 

with viral outbreaks will first correlate with the narrower range of climatic variation found at the 121 

emergence site and then in global transportation hubs, rather than reflecting ultimate biological 122 

limits on growth and survival. We recognize that future data could alter our predictions further, 123 

especially as COVID-19 becomes endemic (15). However, less variable model predictions and 124 

exposure to the most common global climates by April (Fig. 3) suggest that model predictions 125 

might have stabilized at least for now.  126 

 Using our model, we predicted potential COVID-19 growth rates in the upcoming 127 

months relative to a weekly doubling rate (λ=0.1; Fig. 4). Based mostly due to variation in UV 128 

and temperature, our model predicts that COVID-19 risk will decline across the northern 129 

hemisphere this summer, remain active in the tropics, and increase in the southern hemisphere as 130 

days shorten and UV declines (Fig. 4, left and right panels). However, given high uncertainty, a 131 

non-negligible risk exists throughout the world for potential outbreaks in summer similar to that 132 

observed at the outset of the pandemic (Fig. 4, middle panel, dark blue = 30% probability of 133 

λ>0.1). By September, declining daylength steadily increases predicted risks of COVID-19 134 

outbreaks in the northern hemisphere until a peak in December-January, while risks decline in 135 

the southern hemisphere. Although this model represents our best current estimate, a range of 136 

outcomes still remain possible (Fig. 4 middle). Furthermore, these predictions of potential 137 

growth need not be realized if appropriate interventions are enacted or a vaccine is developed. 138 

The overall conclusion is that although COVID-19 might decrease temporarily during summer, 139 

there is still a moderate probability that it is weakly affected by summer weather, and that it 140 

could return in autumn and pose increasing risks by winter. 141 
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Our predictions were robust to the manifold decisions made regarding data and model 142 

structure. We explored the consequences of using different parameter comparisons, the effects of 143 

shorter (7-day) time windows for aggregating weather data, different cut-offs for minimum 144 

number of cases, varying number of weeks analyzed per political unit, whether we analyze the 145 

first or worst weeks following the infection threshold, and if we included weather maxima and 146 

minima instead of means and found no qualitative changes to results, with the exception  that 147 

maximum daily UV during at 14-day interval substantially outperformed the mean 148 

(Supplementary materials). We also explored the effect of excluding data from China, which 149 

lacked data prior to control measures in many cases, and found similar results.  150 

 Understanding the true contributions of weather to human pathogens requires combining 151 

insights from observational analyses like this one and manipulative experiments that isolate 152 

factors under controlled conditions (5, 12). Other causal factors correlated with weather variables 153 

in our model could have contributed to our findings, including weather-associated human 154 

behaviors (e.g., seasonal aggregations for education or religion). Despite initial suggestions that 155 

seasonality would strongly control COVID-19, weather only explains 17% of the variation in 156 

COVID-19 growth rates. Undescribed factors at the level of political units were just as important 157 

as weather (19% of variation), and much of the variation (64%) remains unexplained. Future 158 

studies should embed these meteorological insights into epidemiological models that include 159 

human demography, movement, sociocultural behaviors, healthcare capacity, and political 160 

interventions [e.g., (2, 4, 15)].  161 

 We demonstrate that COVID-19 growth rate increases with reduced ultraviolet light, 162 

higher temperatures, and lower relative humidity. We predict that COVID-19 will oscillate 163 

between the northern and southern hemisphere, based largely on seasonal variation in UV 164 
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radiation and temperature without continuing interventions like social distancing. Despite a 165 

possible, but highly uncertain, temporary summer reprieve in the north, COVID-19 is more 166 

likely to return by autumn and threaten further outbreaks. The north should take this time to 167 

build resilience against future outbreaks, while assisting countries in the tropics and southern 168 

hemisphere. Uncertainty remains high, however, so we urge caution when making decisions such 169 

as removing societal interventions before more permanent pharmaceutical solutions can be 170 

implemented. Overcoming this pandemic will take extensive global collaborative scientific 171 

efforts to unravel its biology as well as the continuing resolve of people worldwide adhering to 172 

social restrictions.  173 
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Figure 1 Observed and predicted maximum growth rates for COVID-19 along with 221 

graphical partitioning of model components including (A) weather and demography, (B) 222 

country effects, and (C) residual variation. Country effects are shown as the difference in 223 

growth rate between the country and the global mean. Only 17% of variation is explained by 224 

seasonality, while 19% of variation arises from country specific factors which may include 225 

quarantine policies, healthcare, or reporting practices.  226 

 227 

Figure 2 Median standardized estimates for weather and demographic factors (A) and for 228 

country effects (B) for best predictive model with 95% credible intervals (light blue). 229 

Country codes in B follow GADM ISO3 conventions. 230 

 231 

Figure 3 The effect of temperature and UV on COVID-19 growth rate as the pandemic 232 

spreads to new climates. Top, early COVID-19 outbreaks (indicated by growth rate 233 

proportional to blue symbol area) occurred in a subset of potential temperatures (°C) and 234 

ultraviolet light (Joules/m2) levels possible in a year (background gray-blue gradient) and for that 235 

specific time period (red overlay) based on counts of 5-year averages of climate variables. 236 

Bottom, Model coefficients and uncertainty through time demonstrates dynamic shifts and 237 

stabilization of parameter estimates (50% and 95% credible intervals indicated by colored and 238 

gray fills) and illustrates how earlier studies may have detected a negative temperature 239 

dependence. Before Feb 24 patterns were dominated by data from China, until large jumps in 240 

cases in Iran, Italy, and Japan appear in the data set, providing novel climate space to inform the 241 

model and leading to an abrupt change in model coefficients. 242 

 243 
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 244 

Figure 4: Predicted potential growth rates of COVID-19 by month using best model. 245 

Leftmost column, Potential growth rate relative to weekly doubling time (λ = 0.1). Red indicates 246 

faster than a weekly doubling rate and blue indicates slower rates. Central column indicates the 247 

posterior probability of growth rates exceeding a weekly doubling rate. Rightmost panel 248 

indicates which predictor contributes most (based on predictor*coefficient) to COVID-19 growth 249 

rate (λ) in each 0.25° cell, with stippling indicating negative contributions.  250 
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Fig. 1 251 

 252 
 253 
  254 
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 255 
Fig. 2A 256 

B  257 

 258 
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Fig. 3259 
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 264 
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Fig. 4 266 
 267 

 268 
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 270 
 271 
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Methods  273 
 274 
Overview 275 
We examined the weekly rate of increase in the number of COVID-19 infections as a function of 276 
weather, while controlling for human population structure, in order to determine the effects of 277 
the abiotic environment on the growth rate of infections (). Our selection of weather variables 278 
and the time frame within which we measured variation was based on the limited, but rapidly 279 
expanding, experimental and observational research on the survival and transmission of SARS-280 
CoV-2 virus and human resistance to the resultant COVID-19 disease (1–5). We performed 281 
model selection to optimize model prediction of cross-validated data and performed 282 
comprehensive sensitivity analysis with respect to both data preparation and modeling decisions 283 
and found no qualitative differences between the findings represented in our best model and 284 
other models using different, but reasonable, decisions. 285 
 286 
Infection Data 287 
Daily infection data were obtained from the Johns Hopkins Center for Systems Science and 288 
Engineering (6), which documents country level aggregations of infected individuals, except in 289 
Australia, Canada, China, and USA, where state-level data are available. From these daily data, 290 
we calculated weekly growth rate () assuming an exponential model for the growth of the 291 
number of infected individuals, which fit well to COVID-19 dynamics during the early stages of 292 
spread. The starting point for one-week intervals were polity specific (either country or state 293 
level depending on the resolution of available data) and calculated beginning on the first day 294 
(denoted t0) that the number of infected individuals exceeded 40 (and 20 and 60; see sensitivity 295 
analysis below). This minimum was necessary to eliminate the early dynamics of COVID-19 in 296 
locations due primarily to transport from other regions rather than local, community 297 
transmission. This moving window approach allowed us to capture local differences in onset date 298 
of transmission without imposing any artificial cutoffs (e.g., based on calendar week). By 299 
summarizing the data in this way, we had 541 observations of  distributed over 203 political 300 
units. 301 
 302 
To capture periods when the spread rate was most severe, we chose to focus on the worst three 303 
(also two, four; see sensitivity analysis) weeks in each political unit based on the magnitude of 304 
lambda, for our model. We were primarily concerned about high rates of spread, and their 305 
possible drivers, so this decision controls for differences among polities in the onset of severe 306 
spread and differences in the timing of control measures that may reduce growth. Hence, a focus 307 
on maximum growth rates is the best, unbiased estimate of COVID-19 growth in the absence of 308 
control measures, and most likely to be influenced by weather. In sensitivity analyses, we also 309 
considered using the first 2,3, or 4 weeks following t0, and found similar, but more noisy results, 310 
owing to the likely variation among countries in the early rates of spread (e.g., in Thailand, 311 
growth was initially low before increasing rapidly). 312 
 313 
Weather data 314 
Weather data was aggregated from 3-hourly data downloaded from the ERA5 model by 315 
ECWMF (7) and averaged at 14 day intervals preceding the time period in which  calculated for 316 
each polity. A 14 day interval captures the known infective period of SARS-CoV-2, where 317 
infections are known to occur from period of one to 14 days (8). Hence, we use the actual 318 
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observed weather during the period of viral transmission. This decision contrasts with previous 319 
studies that used average monthly climate calculated over the interval 1970-2000 provided by 320 
Worldclim (9). Notably, the biweekly averages we calculated are, on average, expected to reflect 321 
higher temperatures due to climate change in the last 50 years compared to historic long-term 322 
averages. Further, our biweekly estimates better reflect that actual conditions when infections 323 
occurred, and thus are expected to better predict transmission if indeed they influence it.  324 
 325 
Based on existing insights about SARS-CoV-2 and the onset of COVID-19, we considered the 326 
following weather variables:  temperature 2m above land surface, relative humidity, absolute 327 
humidity, and total incoming UV radiation at the land surface. To align the weather data with 328 
infection data for a given political unit, we determined the first day (t0) when more than 40 329 
individuals were reported (also 20 and 60 infections; see below). We calculated the mean values 330 
of the weather variables over the 14-day window preceding t0. For example, t0 for Connecticut, 331 
USA was March 16 (when 41 records had accumulated), so the weather variables were averaged 332 
over the 14-day window preceding March 10. This reflects the assumption that detected 333 
infections between March 10-16 primarily occurred between February 24-March 9. Although 334 
imperfect, the temporal autocorrelation of weather suggests that this is reasonable (e.g., even if 335 
an infection occurred on March 2, there is typically high correlation on weather, then, and March 336 
3-9). 337 
 338 
Finally, note that we also explored the use of minimum and maximum values of weather 339 
variables to account for the possibility that transmission was more likely driven by extreme 340 
weather rather than average weather. We also considered using weekly rather than biweekly 341 
intervals to reflect the possibility of shorter incubation periods. Outcomes were robust to these 342 
decisions. 343 
 344 
Previous studies have noted that the coarse spatial grain of infection data (country or state level) 345 
makes it difficult to interpret weather variables in the context of such large spatial units (10). To 346 
address this, we calculated weather averages over the quarter degree grid cells in a polity, 347 
weighted by the population size in each cell. This resulted in weather covariates that better 348 
reflect where most humans are and hence where infections occurred. Also, early maximum 349 
transmission rates were usually located in large cities, and thus weights weather variation in line 350 
with this bias.  351 
 352 
Population data 353 
We obtained human population data from Worldpop.org focusing on total human population 354 
(density) and proportion of the population over age 60. Population density was hypothesized to 355 
control for the number of interactions individuals in a location were likely to experience whereas 356 
the proportion of people over 60 in a polity was hypothesized to control for reporting rate, given 357 
that older people are more adversely affected by the disease and thus more likely to be tested. 358 
Data were obtained at 1km resolution and summed to the quarter degree grid imposed by the 359 
weather data. Polity information was obtained based on global standards (GADM.com). Each 360 
quarter degree grid cell was assigned to a polity and cells were averaged over the polity.  361 
 362 
Models 363 
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We focus on the growth rate of COVID-19 cases,, rather than estimating a climate niche for the 364 
virus based on its presence or absence or total number of cases, as explored in preliminary 365 
studies (11).  to avoid issues with disequilibrium in the virus’ distribution. We focused on 366 
estimating the rate of increase () of infected individuals, rather than directly modeling the 367 
number of infected individuals, in order minimize the influence of different reporting biases in 368 
different polities. We calculated  as= ( ln(N(t)) -ln(N(t0) )/t where t was taken to be 7 days and t0 369 
defined the start date for counting infections. This formulation is independent of reporting bias 370 
under the assumption that the reporting bias is constant over the 7-day interval. To see this, 371 
consider that the true number of infected individuals N* is related to N via the proportion of 372 
cases reported, p, such that N=pN*. Substituting  this expression for N into the expression for , it 373 
is apparent that p cancels out. Hence so long as p is approximately constant across a 7-day 374 
interval, it does not affect the estimate of growth rate. 375 
 376 
We modeled with a hierarchical Bayesian Gaussian regression with a log link on the weekly 377 
transmission rate. The full model included mean 14 day lagged temperature, mean 14 day lagged 378 
relative humidity, mean 14 day lagged absolute humidity, mean 14 day lagged UV, human 379 
population density and proportion of the population over 60. We used linear terms for all 380 
variables but also considered a quadratic term for temperature based on suggestions of modality 381 
in previous studies (11–13). Based on sensitivity analyses discussed below, we found that 382 
maximum daily UV was a considerably better predictor than the mean (delta LOOIC = 4.x) so 383 
we used the maximum in our best model. Country-level random effects were used to capture 384 
differences in policies, health care or other locally specific behaviors. We also explored 385 
state/province-level random effects (where applicable), but country-level effects performed 386 
considerably better in all models explored based on model selection criteria. 387 
 388 
Model selection 389 
We were interested in developing models with high predictive ability. Thus, we performed 390 
model selection using leave-one-out (LOO) cross validation. This technique iteratively uses all 391 
data except for the ith data point to develop a model, then it predicts the left-out point, and uses 392 
the divergence between model prediction and observation to rate model performance. The sum of 393 
these divergences across all N data points is then converted into a standard measure of overall 394 
model performance called the Leave-One-Out Information Criterion (LOOIC), where lower 395 
numbers indicate models that better predict left-out data (14). This model selection method has 396 
been found to excel over alternative Bayesian methods such as Deviance Information Criterion, 397 
and is especially appropriate when the objective is prediction (14). 398 
 399 
Model selection was performed by starting with the full model and using forward and backward 400 
stepwise selection. The full model regressed the growth rate over a one-week window against 401 
linear terms for mean temperature, mean UV, mean relative humidity, mean absolute humidity 402 
population density, and proportion of the population over 60. We included a quadratic term for 403 
temperature based on earlier studies suggesting a decline in of growth rate with temperature. We 404 
also included an interaction term between temperature and UV to account for their correlation. 405 
All these variables were calculated in the 7-day windows preceding the interval used to calculate 406 
growth rate. During stepwise selection, we note that there were no cases of parameters trading 407 
off with one another and that coefficients for each predictor always retained the same sign and 408 
approximate magnitude regardless of which other predictors were in the model. The only 409 
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exception to this was when UV was excluded from a model that included temperature; the 410 
temperature effect dropped from positive to near zero. Hence it is important to interpret the 411 
positive effect of temperature in our best model as accounting for the effect of temperature only 412 
after UV has been included in the models. 413 
 414 
Once we found the best suite of predictors (excluding the quadratic temperature term, the UV-415 
temperature interaction, absolute humidity, and population density), we explored whether using 416 
the maximum or minimum daily values of each weather variable, and 7 versus 14 day lagged 417 
intervals, improved LOOIC. The only case where we found significant model improvement 418 
compared to the biweekly means was for maximum UV over both 7- and 14-day intervals. Since 419 
the 14-day interval improved model performance most (based on  LOOIC), we chose that as the 420 
summary statistic for UV. Notably for all other weather variables there was negligible difference 421 
in LOOIC when we used weekly versus biweekly means and hence we used biweekly values for 422 
all variables for simplicity.  423 
 424 
Sensitivity analysis 425 
Sensitivity analysis for a variety of model decisions was conducted to determine whether our key 426 
finding - the relation between COVID-19 growth rate and temperature, UV, and relative 427 
humidity - was affected by any of our decisions. In all cases that follow, the median of the 428 
temperature coefficient was positive, with a 95% credible interval sometimes overlapping zero 429 
and sometimes not, depending on the model. In all cases, the median and 95% credible interval 430 
for UV was negative. In all cases, the 95% intervals for relative humidity and population density 431 
always overlapped zero but the medians were always negative and positive, respectively. The 432 
quadratic temperature term never improved the model, indicating that there was no support for a 433 
unimodal response to temperature.  434 
 435 
Sensitivity to a number of data preparation steps was assessed. During data preparation, we 436 
considered the 2, 3, and 4 worst weeks (highest lambda) following t0, as well as the first 2,3, and 437 
4 weeks following t0. We chose different cutoffs (20,40,60) for numbers infected to account for 438 
the difficulty in determining the time when spread became local, rather than imported. Due to the 439 
strong control measures in place in China by the time our data set begins (January 22, 2020), we 440 
also compared our best model with and without data from China and found no qualitative change 441 
in outcomes. 442 
 443 
Coefficients over time 444 
To explore how our inference about different weather factors may have changed over time, as the 445 
virus approaches a geographic and environmental equilibrium (which it may still not be at), we 446 
fit a model each day since February 1, 2020, accumulating infection data up until the most recent 447 
date of analysis. This analysis can illustrate (1) how earlier studies may have inferred a negative 448 
dependence of growth on temperature, (2) the uncertainty inherent in earlier estimates of 449 
temperature dependence, (3) the disequilibrium between COVID-19 and the environment early 450 
in its spread, and (4) the smaller credible intervals, and hence increasing confidence in our model 451 
based on more recent data. Note that the model used to illustrate this pattern (1) used the first 452 
(rather than the worst) 3 weeks following t0 to accumulate data as early as possible and thus 453 
reflect decisions made in earlier studies, and (2) used polity (rather than country) effects because 454 
the data in early February was predominantly from China and thus country effects could not be 455 
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fit. Although early data gaps meant that we could not precisely replicate previous analyses with 456 
this exercise, we obtained similar outcomes using this model for the present analysis (again 457 
indicating model robustness). As well, this exercise demonstrated how conclusions from earlier 458 
studies may have arisen, even with our more refined model, but based on a longer time series. 459 
 460 
Projections 461 
Future predictions of the *potential* growth rate in May-September was made by projecting our 462 
highest performing model according to LOOIC. Importantly, we reinforce that our predictions 463 
pertain to the possible growth rate in the absence of social distancing or other control measures 464 
because it is based on a model fit with infections that occurred primarily before precautionary 465 
policies were implemented. Note that even if a policy were implemented on, for example, March 466 
14, we expect that infections reported in the next two weeks were initiated before the policy 467 
began. Hence, we predict the underlying contribution of weather to future COVID-19 growth. 468 
Importantly, these predictions reflect what would happen if other control measures are relaxed 469 
and the natural dynamics of infection can begin again in a population with little resistance. 470 
Currently governments are deciding when and how to relax control measures, often under the 471 
assumption that weather will lessen the potential for spread in the upcoming months. Thus, 472 
whereas we do not presume to predict the actual future growth rate of COVID-19, we do hope to 473 
capture the potential maximum growth rate in order to inform the relative risks of alternative 474 
control strategies.  475 
 476 
To make future projections, we obtained monthly mean temperature and relative humidity 477 
weather data from 2015-2019 from the same data source as above, under the assumption that 478 
these recent years are representative of what to expect in the coming months. Notably hotter or 479 
cloudier (lower UV) days in the coming months would suggest higher growth rates than we 480 
predict. UV data was not available in a monthly aggregation, so we obtained the 3-hourly data 481 
and aggregated it to monthly values. Human population was assumed to remain constant. We 482 
projected the models without random effects (or equivalently at the mean value of 0) as we were 483 
reluctant to assume that country-level policies, reporting, or health care potential will remain the 484 
same in the future. We expect that different country-level effects will dominate in the future, but 485 
predicting these offsets is beyond the scope of this study.  486 
 487 
Caveats 488 
As with any predictive study, we seek to use the best available data and understanding of 489 
mechanisms to develop possible projections that make clear underlying decisions and 490 
uncertainty. Ultimately, such predictions must be treated with appropriate caution given the 491 
limited understanding of SARS-CoV-2 virus,  human resistance, and its transmission dynamics 492 
at this time. Thus, while we seek to inform decisions, those decisions must also recognize the 493 
inherent uncertainty in any predictive model, but especially in the context of limited information. 494 
Future data will ultimately be the arbiter of these predictions, and thus good predictive modeling 495 
will require repeated bouts of model validation, revision, and re-projection as we learn more 496 
about this virus.  497 
 498 
In particular, we await mechanistic information on viral physiology and human resistance to 499 
move beyond the correlative approach taken here by necessity. Mechanistic models apply 500 
insights about an organism’s intrinsic biology using parameters often collected from careful 501 
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experimental manipulations. However, in the absence of this information, correlative models can 502 
predict near-term dynamics with accuracy (15). Bayesian approaches like ours can integrate both 503 
mechanistic and correlative knowledge as these pieces of information become available.  504 
 505 
One thing that we do not account for in our model is human behavior and control measures. By 506 
modeling maximum growth rate and using a threshold number of cases, we restrict our analyses 507 
to the period during which the disease expanded quickly, following the beginning of community 508 
transmission but before major control measures were implemented. For instance, most countries 509 
began implementing national control measures in mid-March, which would influence infections 510 
recorded into early April, based on a 14-day window for symptoms to emerge. Hence, we chose 511 
to limit our data set to records before April 7. However, we note that following early April, 512 
growth rates are expected to be much lower due to control measures, and these will continue to 513 
be important to reduce growth rates below the potential values we predict here which do not 514 
account for control. 515 
 516 
We used available insights about SARS-Cov-2, related viruses, and observations of COVID-19 517 
dynamics to select a list of factors that likely influence it. Although we purposefully limited 518 
these variables to reflect our best knowledge and to avoid overfitting, certainly other climate and 519 
epidemiological factors are likely missing from the model. Future studies should consider 520 
embedding these climate insights into epidemiological models that include human demography, 521 
immunity, movement, behaviors, medical capacity, and control efforts  (4). 522 
 523 
 524 
 525 
  526 
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Supplementary Materials  527 
 528 
Figure S1. Posterior predicted probabilities of growth rate refelect weak trends with environment 529 
and high uncertainty in predictions. 530 

 531 
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